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Quantum nonlocality is shown to be an artifact of the Copenhagen
interpretation, in which each observed quantity has exactly one
value at any instant. In reality, all physical systems obey quantum
mechanics, which obeys no such rule. Locality is restored if observed
and observer are both assumed to obey quantum mechanics, as in
the many-worlds interpretation (MWI). Using the MWI, I show that
the quantum side of Bell’s inequality, generally believed nonlocal,
is really due to a series of three measurements (not two as in the
standard, oversimplified analysis), all three of which have only
local effects. Thus, experiments confirming “nonlocality” are actu-
ally confirming the MWI. The mistaken interpretation of nonlocal-
ity experiments depends crucially on a question-begging version
of the Born interpretation, which makes sense only in “collapse”
versions of quantum theory, about the meaning of the modulus of
the wave function, so I use the interpretation based on the MWI,
namely that the wave function is a world density amplitude, not
a probability amplitude. This view allows the Born interpretation
to be derived directly from the Schrödinger equation, by applying
the Schrödinger equation to both the observed and the observer.

Bell’s theorem | Einstein–Podolsky–Rosen experiment | multiverse |
indistinguishability

Nonlocality is a standard example of a quantum mechanical
property not present in classical mechanics. A huge number

of papers are published each year in the major physics journals
[e.g., 5 in Physical Review Letters (PRL) in 1997 and 23 in PRL in
2004], purporting to clarify the meaning of “nonlocality.” The
phenomenon of nonlocality was first described in 1935 by Einstein,
et al. (1), in their classic paper, “Can quantum mechanical de-
scription of physical reality be considered complete?”
The basic idea in Einstein, et al.’s paper (1) is best described in

the well-known formulation in terms of two electrons and their
spins. We have two spin 1/2 particles, and the two-particle system
is in the rotationally invariant singlet state with zero total spin
angular momentum. Thus, if we decide to measure the particle
spins in the up–down direction, we would write the wave function
of such a state as

jΨi= j↑i1j↓i2 − j↓i1j↑i2ffiffiffi
2

p ; [1]

where the direction of the arrow denotes the direction of spin,
and the subscript identifies the particle. If we decide to measure
the particle spins in the left–right direction, the wave function
would be written in a left–right basis as

jΨi= j← i1j→ i2 − j→ i1j← i2ffiffiffi
2

p : [2]

Nonlocality arises if and only if we assume that the measure-
ment of the spin of a particle “collapses the wave function” from
the linear superposition to either j↑〉1j↓〉2 or j↓〉1j↑〉2 in [1]. If
such a collapse occurs, then measuring the spin of particle 1
would fix the spin of particle 2. The spin of particle 2 would be
fixed instantaneously, even if the particles were allowed to sep-
arate to large distances. If at the location of particle 1, we make
a last-minute decision to measure the spin of particle 1 in the
left–right direction rather than the up–down direction, then

instantaneously the spin of particle 2 would be fixed in the op-
posite direction to that of particle 1—if we assume that [2] col-
lapses at the instant we measure the spin of particle 1. The
purported mystery of quantum nonlocality lies in trying to un-
derstand how particle 2 changes—instantaneously—in re-
sponse to what has happened in the location of particle 1.
There is no mystery. There is no quantum nonlocality. Particle

2 does not know what has happened to particle 1 when its spin is
measured. State transitions are entirely local in quantum me-
chanics. All these statements are true because quantum me-
chanics tells us that the wave function does not collapse when
the state of a system is measured. In particular, nonlocality dis-
appears when the many-worlds interpretation (2–5) is adopted.
The many-worlds interpretation (MWI) dispels the mysteries of
quantum mechanics. Collapse interpretations are nonlocal. So
the standard argument that quantum phenomena are nonlocal
goes like this: (i) Let us add an unmotivated, inconsistent, un-
observable, nonlocal process (collapse) to local quantum me-
chanics; (ii) note that the resulting theory is nonlocal; and (iii)
conclude that quantum mechanics is nonlocal.
I outlined the arguments in an earlier paper (6). Everett was

the first to suggest (ref. 3, p. 149) that nonlocality would disap-
pear in the MWI, but this paper is to my knowledge the first to
prove what Everett claimed. Here I directly address Bell’s in-
equality, which requires a derivation of the Born interpretation
of the wave function. My derivation starts from the standard
MWI idea that the wave function is not a probability amplitude,
but instead a “world density amplitude,” which is to say jψj2 is
proportional to the density of universes in the multiverse. The
problem is to derive the Born frequencies from this assumption.
Previous derivations have been unsatisfactory, in my judgment,
because an essential part of the physics has been left out. The
physics that has been heretofore omitted has been quantum
mechanical indistinguishability, applied to the experimenters and
their experimental apparatus. From the MWI viewpoint, humans
and their equipment are quantum mechanical objects no less than
atoms and are thus subject to indistinguishability no less than atoms.
Universes in the same quantum state are indistinguishable and
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hence if interchanged, nothing has happened. I use this fact to
derive the Born frequencies. In outline, the indistinguishability
allows probabilities in the Bayesian sense to be assigned to the
likelihood that we will be in a particular universe observing
a particular sequence of paired electron spins, and Bayesian
probability theory tells us how to calculate the most likely fre-
quencies from these probabilities. I show that these most
likely frequencies are the Born frequencies.

The Disappearance of Nonlocality in the MWI
To see how nonlocality disappears in detail, let us analyze the
measure of the spins of the two particles from the many-worlds
perspective. Let Mi(. . .) denote the initial state of the device that
measures the spin of the ith particle. The ellipsis denotes a
measurement not yet having been performed. We can for sim-
plicity assume that the apparatus is 100% efficient and that the
measurement does not change the spin being measured (putting
in a more realistic efficiency and taking into account the fact that
measurement may affect the spin slightly would complicate the
notation but the conclusions would be unchanged). That is, if
each particle happens to be in an eigenstate of spin, a measure-
ment of the ith particle changes the measuring device—but not
the spin of the particle—as

U1M1ð . . . Þj↑i1 =M1ð↑Þj↑i1
U1M1ð . . . Þj↓i1 =M1ð↓Þj↓i1

[3]

U2M2ð . . . Þj↑i2 =M2ð↑Þj↑i2
U2M2ð . . . Þj↓i2 =M2ð↓Þj↓i2;

[4]

where U i are linear operators that generate the change of state in
the measurement apparatus, corresponding to the measurement.
The operators U i are actually unitary, but this is not essential to the
argument. What is essential is linearity.
In particular, if particle 1 is in an eigenstate of spin up, and

particle 2 is in an eigenstate of spin down, then the effect of the
U is together is

U2U1M1ð . . . ÞM2ð . . . Þj↑i1j↓i2 =M1ð↑ÞM2ð↓Þj↑i1j↓i2 [5]

even if particles 1 and 2 are light years apart when their spin ori-
entations are measured. Similarly, the result of measuring the ith
particle in the eigenstate of spin left would be U iMi(. . .)j←〉i =
Mi(←)j←〉i and for an eigenstate of spin right would be
U iMi(. . .)j→〉i = Mi(→)j→〉i, which will generate equations for
spins left and right analogous to Eqs. 3–5.
Now consider the effect of a measurement on the two-particle

system in the Bohm state, that is, with total spin zero. This state
is [1] or [2] with respect to an up/down or left/right basis,
respectively. The result is completely determined by linearity
and the assumed correct measurements on single electrons in
eigenstates. For example, the effect of measurements in which
both observers happen to choose to measure with respect to the
up/down basis is

U2U1M2ð . . . ÞM1ð . . . Þ
�j↑i1j↓i2 − j↓i1j↑i2ffiffiffi

2
p

�

=U2M2ð . . . Þ
�
M1ð↑Þj↑i1j↓i2ffiffiffi

2
p −

M1ð↓Þj↓i1j↑i2ffiffiffi
2

p
�

=
M2ð↓ÞM1ð↑Þj↑i1j↓i2ffiffiffi

2
p −

M2ð↑ÞM1ð↓Þj↓i1j↑i2ffiffiffi
2

p :

[6]

It may appear from Eq. 6 that it is the first measurement to be
carried out that determines the split into the two worlds repre-
sented by two terms in [6]. This is false. In fact, if the measurements

are carried out at space–time events that are space-like separated,
then there is no Lorentz invariant way of determining which
measurement was carried out first. At space-like separation, the
measuring operators U1 and U2 commute, and so we can equally
well perform the measurement of the spins of the electrons in
reverse order and obtain the same splits,

U1U2M1ð . . . ÞM2ð . . . Þ
�j↑i1j↓i2 − j↓i1j↑i2ffiffiffi

2
p

�

=U1M1ð . . . Þ
�
M2ð↓Þj↑i1j↓i2ffiffiffi

2
p −

M2ð↑Þj↓i1j↑i2ffiffiffi
2

p
�

=
M1ð↑ÞM2ð↓Þj↑i1j↓i2ffiffiffi

2
p −

M1ð↓ÞM2ð↑Þj↓i1j↑i2ffiffiffi
2

p ;

[7]

the last line of which is the same as that of [6] (except for the
order of states, which is irrelevant).
The effect of measurements in which both observers happen to

choose to measure with respect to the left/right basis is

U2U1M2ð . . . ÞM1ð . . . Þ
�j← i1j→ i2 − j→ i1j← i2ffiffiffi

2
p

�

=U2M2

�
M1ð←Þj← i1j→ i2ffiffiffi

2
p −

M1ð→Þj→ i1j← i2ffiffiffi
2

p
�

=
M2ð→ ÞM1ð←Þj← i1j→ i2ffiffiffi

2
p

−
M2ð← ÞM1ð→ Þj→ i1j← i2ffiffiffi

2
p :

[8]

A comparison of [6] or [7] with [8] shows that if two space-
like–separated observers fortuitously happen to measure the
spins of the two particles in the same direction—whatever this
same direction happens to be—both observers will split into two
distinct worlds, and in each world the observers will measure
opposite spin projections for the electrons. However, at each
event of observation, both of the two possible outcomes of the
measurement will be obtained. Locality is preserved, because
indeed both outcomes are obtained in total independence of the
outcomes of the other measurement. The linearity of the oper-
ators U1 and U2 forces the perfect anticorrelation of the spins of
the particles in each world. Because the singlet state is rota-
tionally invariant, the same result would be obtained whatever
direction the observers happened to choose to measure the spins.

The Crucial Third Measurement
In the experiment in ref. 1, there is a crucial third measurement:
the comparison of the two observations made by the spatially
separated observers. In fact, the relative directions of the two
spin measurements have no meaning without this third mea-
surement. Once again, it is easily seen that initialization of this
third measurement by the two previous measurements, plus
linearity, implies that this third measurement will confirm the
split into two worlds. In the Copenhagen interpretation, this
third measurement is not considered a quantum measurement
at all, because the first measurements are considered as trans-
ferring the data from the quantum to the classical regime.
However, in the MWI, there is no classical regime; the com-
parison of the data in two macroscopic devices is just as much
a quantum interaction as the original setting up of the singlet
state. Furthermore, this ignored third measurement is actually of
crucial importance: It is performed after information about the
orientation of the second device has been carried back to the first
device (at a speed less than that of light!). The orientation is
coded with correlations of the spins of both electrons, and these
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correlations (and the linearity of all operators) will force the
third measurement to respect the original split. These correla-
tions have not been lost, for no measurement reduces the wave
function: The minus sign between the two worlds is present
throughout Eqs. 1–8.
To see explicitly how this third measurement works, represent

the state of the comparison apparatus by Mc[(. . .)1(. . .)2], where
the first entry measures the record of the apparatus measuring the
first particle, and the second entry measures the record of the ap-
paratus measuring the second particle. Thus, the third measurement
acting on eigenstates of the spin-measurement devices trans-
forms the comparison apparatus as

UcMc
�ð . . . Þ1ð . . . Þ2�M1ð↑Þ=Mc

�ð↑Þ1ð . . . Þ2�M1ð↑Þ
UcMc

�ð . . . Þ1ð . . . Þ2�M1ð↓Þ=Mc
�ð↓Þ1ð . . . Þ2�M1ð↓Þ

UcMc
�ð . . . Þ1ð . . . Þ2�M2ð↑Þ=Mc

�ð . . . Þ1ð↑Þ2�M2ð↑Þ
UcMc

�ð . . . Þ1ð . . . Þ2�M2ð↓Þ=Mc
�ð . . . Þ1ð↓Þ2�M2ð↓Þ;

where for simplicity I have assumed the spins will be measured in
the up or down direction. Then for the state [1], the totality of
the three measurements together—the two measurements of the
particle spins followed by the comparison measurement—is

UcU2U1Mc
�ð . . . Þ1ð . . . Þ2�M2ð . . . ÞM1ð . . . Þ×

×
�j↑i1j↓i2 − j↓i1j↑i2ffiffiffi

2
p

�

=Mc
�ð↑Þ1ð↓Þ2�M2ð↓ÞM1ð↑Þj↑i1j↓i2ffiffiffi

2
p −

− Mc
�ð↓Þ1ð↑Þ2�M2ð↑ÞM1ð↓Þj↓i1j↑i2ffiffiffi

2
p :

Heretofore I have assumed that the two observers have chosen
to measure the spins in the same direction. For observers who
make the decision of which direction to measure the spin in the
instant before the measurement, most of the time the two direc-
tions will not be the same. The experiment could be carried out
by throwing away all observations except those in which the
chosen directions happened to agree within a predetermined tol-
erance. However, this would waste most of the data. The Aspect–
Clauser–Freedman experiment (7, 8) is designed to use more of
the data by testing Bell’s inequality for the expectation value of
the product of the spins of the two electrons with the spin of one
electron being measured in direction n̂1 and the spin of the other
in direction n̂2. If the spins are measured in units of Z=2, the
standard quantum mechanical expectation value for the product is

hΨj�n̂1 · σ1
��
n̂2 · σ2

�jΨi=−n̂1·n̂2; [9]

where jΨ〉 is the singlet state [1]/[2]. In particular, n̂1 = n̂2 is the
assumed setup of the previous discussion. Because the MWI
shows that local measurements in this case always give +1 for
one electron and −1 for the other, the product of the two is
always −1 in all worlds, and thus the expectation value for the
product is −1, in complete agreement with [9].
To show how [9] comes about by local measurements splitting

the universe into distinct worlds, I follow [9] and write the singlet
state [1]/[2] with respect to some basis in the n̂1 direction as

jΨi= �1	 ffiffiffi
2

p ��

n̂1; ↑
�
1



n̂1; ↓
�
2 −


n̂1; ↓

�
1



n̂1; ↑
�
2

�
: [10]

Let another direction n̂2 be the polar axis, with θ the polar
angle of n̂1 relative to n̂2. Without loss of generality, we can
choose the other coordinates so that the azimuthal angle

of n̂1 is zero. Standard rotation operators for spinor states then
give (9)



n̂1; ↑
�
2 = ðcos θ=2Þ

n̂2; ↑�2 + ðsin θ=2Þ

n̂2; ↓

�
2

n̂1; ↓

�
2 =−ðsin θ=2Þ

n̂2; ↑

�
2 + ðcos θ=2Þ

n̂2; ↓

�
2;

which yields

jΨi= �1	 ffiffiffi
2

p ��
−ðsin θ=2Þ

n̂1; ↑ i1jn̂2; ↑

�
2

           + ðcos θ=2Þ

n̂1; ↑
�
1



n̂2; ↓�2
          − ðcos θ=2Þ

n̂1; ↓

�
1



n̂2; ↑�2
           −ðsin θ=2Þ

n̂1; ↓�1

n̂2; ↓

�
2

�
:

[11]

In other words, if the two devices measure the spins in arbi-
trary directions, there will be a split into four worlds, one for
each possible permutation of the electron spins. Just as in the
case with n̂1 = n̂2, normalization of the devices on eigenstates
plus linearity forces the devices to split into all of these four
worlds, which are the only possible worlds, because each ob-
server must measure the electron to have spin +1 or −1.

Using Many-Worlds and Bayes–Laplace Probability Theory to
Derive the Born Interpretation
The fact that the splits are determined by the nature of the mea-
surement apparatus is the key to deriving the Born interpreta-
tion wherein the squares of the coefficients in [11] are the
“probabilities” of an observed occurrence of the four respective
outcomes in [11]. Note that all two or four outcomes actually
happen: The sums in [11] (or [1] or [2]) are in 1–1 correspondence
with real universes. Because the observers are unaware of the
other versions of themselves after a measurement, ignoring the
existence of the other versions necessarily means a loss of in-
formation available to one observer, and it is this loss of in-
formation that results in probabilities. The information is still
in the collection of observers—time evolution is unitary—but it
is now divided between the four versions, who are now mutually
incommunicado.
Note that I have placed the word probabilities above in quo-

tation marks. I do this because many physicists are confused
about the meaning of the word probability. Most think that
probability means the relative frequency of some event among
some collection of events, for example the relative number of
times we measure the spin to be up, divided by the total number
of times we measure the spin in the vertical direction, in the limit
as the number of measurements approaches infinity. This is not
the meaning given to probability by the physicist founder of
probability theory, Pierre-Simon de Laplace, for whom proba-
bilities are a numerical measure of human ignorance and not an
objective feature of nature (10). In the case of quantum me-
chanics, the ignorance in question is ignorance of the other
universes of the multiverse. The frequency interpretation of
probability was introduced into physics by Maxwell, who
obtained this mistaken idea from Adolphe Quételet, who has
been called “one of the most destructive fellows in the history of
thought” (ref. 11, p. 241). Maxwell had an excuse: He was only
19 y old when he encountered Quételet’s mistaken idea, via an
article by John Herschel (ref. 12, p. 587). Maxwell used the
frequency interpretation in his statistical physics work, where it
was hugely successful. So when the Born interpretation was first
presented in the late 1920s, the original Laplacean meaning of
probability had been forgotten, and the frequency interpretation
of probability was adopted to give a meaning to the square of the
modulus of the wave function.
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However, the course of atoms and their spins in the multiverse
is exactly and completely determined by the deterministic wave
equation. Further, the fact that it is the square of the modulus of
the wave function that gives the best estimate of the probability
density—in the sense of a numerical value of human ignorance—
is due to the deterministic nature of the wave equation itself.
To see this, let me show that quantum mechanics is just clas-

sical mechanics required to be globally deterministic. The most
general expression of classical mechanics is the Hamilton–Jacobi
equation

∂S
∂t

+H
�
xi;

∂S
∂xi

; t

= 0: [12]

The most general Hamiltonian we need to consider is

H =
Xk
i=1

�
~∇ iS

�2
2mi

+V ðx1; x2; . . . ; x3N ; tÞ; [13]

where there are k particle types, each type with mass mi, and
each particle type has li particles. The operator ~∇ i is, for each i,
the differential operator in 3li dimensions. If V is an attractive
potential, the trajectories can cross, resulting in a breakdown of
the equation at a caustic singularity. This can be prevented by
adding to the potential V the “quantum” potential (ref. 13, pp.
51–52, and ref. 14):

U =−
�
Z2

2

Xk
i=1

1
mi

�
∇2

i R
R


: [14]

The new function R satisfies the continuity equation

∂R2

∂t
+
Xk
i=1

~∇ i ·

 
R2

~∇ iS
mi

!
= 0: [15]

These two equations, the Hamilton–Jacobi equation with po-
tential V + U and Eq. 15, can be combined into a single equation
if we define a function ψ by the expression (ref. 13, pp. 51–52,
and ref. 14)

ψ ≡R expðiS=ZÞ: [16]

Then the function ψ is easily seen to satisfy the single equation
for the complex valued function ψ :

iZ
∂ψ
∂t

=−
Z2

2

"Xk
i=1

∇2
i ψ

mi

#
+V ðx1; x2; . . . ; x3N ; tÞψ : [17]

Because Eq. 17 is linear, it cannot give rise to caustics and
hence is globally C2. Because it is equivalent to the pair of
classical equations, they also are globally C2. Eq. 17 is obvi-
ously just the Schrödinger equation. I have demonstrated that
quantum mechanics is merely classical mechanics made glob-
ally deterministic.
The Hamilton–Jacobi equation has been recognized since the

19th century as the most powerful mathematical expression of
classical mechanics. However, it is clear that the Hamilton–
Jacobi equation is a multiverse expression of classical mechanics.
In the 19th century, this multiverse nature was ignored. How-
ever, the other worlds of the multiverse really do exist even in
classical mechanics: It is the collision of the worlds that yields the
caustics. If something can hit you, it exists.

Eq. 15 is a conservation equation for these universes, and it is
expressed in standard form for a conservation equation, which
therefore allows us to recognize that R2 is proportional to the
density of universes (only “proportional” because the wave function
can be multiplied by a constant without any change in the physics,
a necessary consequence of linearity). If many universes exist—as
they do—then there must be a quantity representing a density of
universes. The function R2 is this natural choice for this density.
The total number of what I term “effectively distinguishable”

universes is the space integral of R2, and this integral may be
infinite. We see that Schrödinger’s equation does not require the
integral of R2 to be finite, and there will be many cases of
physical interest in which it is not. The plane waves are one
important and indispensable example, and physicists use various
delta function normalizations in this case. An infinite integral of
R2 for the wave function of the multiverse has been shown (15)
to provide a natural and purely kinematic explanation for the
observed flatness of the universe, if the universe is spatially a
three-sphere, as I have argued (15) that it must be if unitarity is
to be preserved in black hole evaporation.
However, for quantum nonlocality problems, the integral of R2

will be finite, and if we pose questions that involve the ratio of
the number of effectively distinguishable worlds with a given
property to the total number of effectively distinguishable worlds,
it is convenient to normalize the spatial integral of R2 to be 1.
With this normalization, R2d3X is then the ratio of the number

of effectively distinguishable universes in the region d3x to the
total number of universes. In the case of spin up and spin down,
there are only two possible universes, and so the general rule for
densities requires us to have the squares of the coefficients of the
two spin states be the total number of effectively distinguish-
able—in this case obviously distinguishable—states. Normalizing
to 1 gives the ratio of the number of the two spin states to the
total number of states.
Consider a measurement of [1] or [11] with θ = π/2. In either

case, the initial state of the observer is the same, and there is no
way even in principle of distinguishing the two or four final states
of [1] or [11], respectively. Because there is no difference be-
tween the initial states of the observers, there is no difference in
the terms of the expression except for the labels I have given
them, and the labels can be interchanged, leaving the physics
invariant. This interchange of labels forms a group and shows
that the probabilities assigned to each state must be the same.
This transformation group argument for assigning a probability
distribution is originally due to Henri Poincaré; see refs. 16 and
17 for a modern discussion. Thus, the invariance of the physics
under the relabeling of the states yields the “principle of in-
difference”: We must assign equal probabilities to each of two or
four states, respectively, and so the probabilities must be 1/2 or
1/4, respectively. These are seen to be the relative numbers of
distinguishable universes in these states. In summary, it is the
indistinguishability of the initial states of the observers in all two
or four final states that forces us to equate the probabilities with
the relative number of distinguishable universes in the final state.
The same argument gives the same equation of the probability of
the general orientation state in [11] with arbitrary θ with the
squares of the coefficients of the states in [11] with the relative
number of effectively distinguishable universes in the final states.
Note that this does not give the Born interpretation in the

usual sense of probabilities mean relative frequencies as the
number of observations approaches infinity. In Laplacean
probability theory, the relative frequency is a parameter to be
estimated from a probability, not a probability itself (see refs. 16
and 17 for a detailed discussion of this point). However, the most
probable value of the relative frequency has been shown (ref. 16,
pp. 336–339, 367–368, 393–394, and 576–578 and ref. 17, pp.
106–110) to be equal in classical physics to the probability (in the
Laplacean sense) that the event will occur.
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A proof in quantum physics that in the limit of a very large
number of trials, the measured relative frequencies will approach
the probabilities—the measure of human ignorance of the other
universes of the multiverse—proceeds as follows. The proof de-
pends crucially on the indistinguishability of the initial states
of the observers and on the actual existence of the many worlds.
Indistinguishability also is an essential idea in Deutsch’s similar
proof (4) for the Born interpretation: Deutsch in effect assumed
that two systems with the same R2 are physically equivalent; they
can be interchanged with no effect on the physics. This is exactly
the same notion of indistinguishability. For simplicity I assume
that the spins of a series of electrons are measured and that the
spins of all of the measured electrons are spin up before the
measurement. I also assume that the measuring apparatus is
at an arbitrary angle θ with respect to the vertical in all of the
universes. In this case the Laplacean probabilities for measuring
spin up along the axis of the apparatus are p↑,θ = cos2(θ/2) ≡ p
and for measuring spin as antialigned with the axis are p↓,θ =
sin2(θ/2) ≡ q, respectively, for 0 ≤ θ ≤ π/2. The probability
prob(r j N) that an observer in a particular universe will, after
N measurements of N different electrons but with all in the
spin-up state, see the electron as having spin aligned with the
apparatus r times is

probðr   jNÞ=
X
k

probðr; Sk jNÞ

=
X
k

probðr j Sk;NÞ×probðSk jNÞ; [18]

where the summation is over all of the 2N sequences of outcomes
Sk, each of which actually occurs in some universe of the multi-
verse, after N measurements in each of these now 2N distinct
universes. The first term in the second line of [18] will equal
one if Sk records exactly r measurements of the spin in the θ
direction and will be zero otherwise. Because the N electrons
are independent, the probability of getting any particular se-
quence Sk depends only on the number of electrons with spins
measured to be in the θ direction and on the number with spins
measured in the opposite direction. In particular, because the
only sequences that contribute to [18] are those with r spins
measured to be in the θ direction and those with N − r spins to
be in the opposite direction, we have

probðSk jNÞ= prqN−r: [19]

However, the order in which the r aligned spins and the N − r
antialigned spins are obtained is irrelevant, so the number of
times [19] appears in the sum [18] will be CN

r , the number of
combinations. Thus, the sum [18] is

probðr jNÞ= N!

r!ðN − rÞ! p
rqnr : [20]

The relative number of universes in which we would expect to
measure aligned spin r times—that is to say, the expected value
of the frequency with which we would measure the electron spin
to be aligned with the axis of the measuring apparatus—is

h f i=
D r
N

E
=
XN
r=0

� r
N

�
probðr jNÞ

=
XN
r=1

ðN − 1Þ!
ðr− 1Þ!ðN − rÞ! p

rqN−r = pðp+ qÞN−1 = p;

[21]

where the lower limit has been replaced by one, because the
value of the r = 0 term is zero.

The sum in the second line of [21] has been evaluated by
differentiating the generating function of the binomial seriesPN

r=0C
N
r p

rqN−r = ðp+ qÞN: That is, we have 〈rm〉 = ( p[d/dp])m

(p + q)N, where q is regarded as a constant in the differentiation,
setting p + q = 1 at the end. This trick also allows us to show
that the variance of the difference between the frequency f = r/N
and the probability p vanishes as N → ∞, because we have

�� r
N
− p
�2�

=
pq
N
: [22]

In fact, all moments of the difference between f and p vanish
as N → ∞, because the generating function gives�� r

N
− p
�m�

∼
1
N
+ higher  order  terms  in 

1
N
: [23]

So we have

lim
N→∞

� r
N

�
= p [24]

in the sense that all of the moments vanish as 1/N as N → ∞.
This law of large numbers explains why it has been possible to
believe, incorrectly, that probabilities are frequencies. This is
not so, as Laplace emphasized over 200 y ago. It is, instead,
that the quantum property of indistinguishability, applied to
the observers, forces the measured frequencies to approach
the probabilities.
This quantum property of indistinguishability also allows us

to answer the question, “What were the two electron spins before
a choice of the measurement directions was made?” The answer
is given by the formalism, as indicated in Eqs. 1 and 2: All possible
pairs exist. This must be the case, because any direction could have
been chosen before a choice is made. The only reason this seems
implausible is due to the neglect of the other universes—other
observers—in the multiverse. The Hamilton–Jacobi equation
asserts that there is an uncountable infinity of identical observers
before any choice of the measurement basis is made. So each
possible basis can be associated with one of these identical
observers. However, because of indistinguishability, it is mean-
ingless to say that a particular spin direction is associated with
a particular universe. Rather, each spin direction is associated
with them all. So, over the entire multiverse, all spin direc-
tions exist.
It cannot be emphasized too strongly that a probability cannot

be an objective feature of reality, but instead a probability is a
numerical expression of human ignorance of the actual state
of affairs. However, we cannot improve our knowledge in the
quantum mechanical case. Quantum indistinguishability and
our ignorance of the other universes preclude an increase
in knowledge.
Note that the above derivation of the measured frequencies

requires the actual existence of the other universes of the mul-
tiverse. All of the sequences Sk really exist. The fact that the
measured frequencies approach the probabilities requires that
the indistinguishable versions of the physicist carry out the mea-
surements simultaneously. So an observation of the approach of
the frequencies to the probabilities is actually an observation of
the effect of the simultaneous action in the multiverse of the
analogs of the human observer.
Using an incorrect probability theory has prevented physicists

from realizing that they have actually directly observed the
effects of the other versions of themselves.
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Many-Worlds Analysis of the Bell Experiment
Now let us use the MWI and Laplacean probability theory to
analyze the Bell experiment.
The expectation value [9] for the product of the spins is just

the sum of each outcome, multiplied respectively by probabilities
of each of the four possible outcomes,

ð+ 1Þð+ 1ÞP↑↑ + ð+ 1Þð−1ÞP↑↓ +
+ ð−1Þð+ 1ÞP↓↑ + ð−1Þð−1ÞP↓↓;

[25]

where P↑↓ is the probability that the first electron is measured
spin up and the second electron spin down and similarly for the
other Ps. Inserting these probabilities—the squares of the coef-
ficients in [11]—into [25] gives the expectation value

1
2
sin2 θ

	
2−

1
2
cos2 θ

	
2−

1
2
cos2 θ

	
2+

1
2
sin2 θ

	
2

=−cos θ=−n̂1·n̂2; [26]

which is the quantum expectation value, [9].
Once again it is essential to keep in mind the third measure-

ment that compares the results of the two measurements of the
spins and, by bringing the correlations between the worlds back
to the same location, defines the relative orientation of the
previous two measurements and in fact determines whether
there is a twofold or a fourfold split. The way the measurement
of [9] is actually carried out in the Aspect–Clauser–Freedman
experiment is to let θ be random in any single run and for the
results of each fixed θ from a series of runs be placed in
separate bins. This separation requires the third measure-
ment, and this local comparison measurement retains the
correlations between the spins. The effect of throwing away
this correlation information would be equivalent to averaging
over all θ in the computation of the expectation value: The
result is

R π
0 hΨ



ðn̂1 · σ1Þðn̂2 · σ2Þ


Ψidθ= 0; i.e., the measured spin

orientations of the two electrons are completely uncorrelated.
This is what we would expect if each measurement of the elec-
tron spins is completely local, which in fact they are. There is no
quantum nonlocality.
Bell’s results (18–20) lead one to think otherwise. However,

Bell made the tacit assumption that each electron’s wave func-
tion is reduced by the measurement of its spin. Specifically, he
assumed that the first electron’s spin was determined by the
measurement direction n̂1 and the value of some local hidden
variable parameters λ1: The first electron’s spin is given by
a function Aðn̂1; λ1Þ. The second electron’s spin is given by

an analogous function Bðn̂2; λ2Þ, and so the hidden variable
expectation value for the product of the spins would not be [13]
but instead Z

ρ
�
λ1; λ2

�
A
�
n̂1; λ1

�
B
�
n̂2; λ2

�
dλ1   dλ2; [27]

where ρ(λ1, λ2) is the joint probability distribution for the hidden
variables. By comparing a triple set of directions ðn̂1; n̂2; n̂3Þ, Bell
derived an inequality showing that the hidden variable [27] was
inconsistent with quantum mechanical [9].
However, [27] assumes that the spin of each particle is a

function of n̂i and λi; that is, it assumes the spin at a location is
single valued. This is explicitly denied by the MWI, as one can
see by letting λi be the spatial coordinates of the ith electron.
Bell’s analysis tacitly assumes that the macroscopic world is a
single-valued world. The automatic elimination of action at a
distance by the MWI is a powerful argument for the validity of
the MWI.

Conclusion
I have given several powerful arguments for the MWI: the res-
toration of locality of physics and the true origin of the Born
interpretation. The main difficultly that many physicists have
with the MWI is the required existence of the analogs of them-
selves. However, every time physicists measure a frequency and
verify the quantum expectation value in the Bell inequality, they
are actually seeing the effect of the analogs of themselves making
the same measurements of the electron spin. The language of the
frequency interpretation of probability has prevented physicists
from seeing what is actually happening. It has prevented phys-
icists from realizing that they are actually observing the effects
in our universe of the other universes of the multiverse.
Have you ever seen Earth rotate on its axis? I have. I see it

every day, when I see the earth’s rotation expose the unmoving
sun at dawn and cover the unmoving Sun from my view at dusk.
Common language, however, says that the Sun sets and rises.
Everyone believed this was so until Copernicus and Galileo
taught us to see nature through the laws of physics. It is time
to see the measurements of the electron spin frequencies through
the laws of quantum mechanics, which apply not only to electrons,
but also to the physicists who measure these spins.
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